Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JVS Vasc Sci ; 4: 100122, 2023.
Article in English | MEDLINE | ID: mdl-37649473

ABSTRACT

Objective: Arterial ring testing is the gold standard for measuring arterial function. Increased arterial tone through arterial contraction and impaired endothelial relaxation (endothelial dysfunction) are key metrics of impaired arterial health in peripheral arterial disease (PAD). To allow for comparative testing of arteries during standard laboratory hours, storage buffers and conditions have been used to extend the functional life of arteries. Various storage conditions have been compared, but there has not been a robust comparison or validation in human arteries. The objective of this work is to optimize storage of arterial segments for endothelial cell (EC) testing in a murine model and to test EC function in human PAD arteries. We hypothesized that certain storage conditions would be superior to others. Methods: Healthy murine aortas were harvested from 10- to 14-week-old C57/Bl6J male and female mice and compared under different storage protocols (24 hours) to immediate arterial testing. The storage conditions tested were: Opti-MEM (37°C or 4°C), Krebs-HEPES with 1.8 mmol/L or 2.5 mmol/L calcium (4°C), or Wisconsin (WI) solution at 4°C. Vascular function was evaluated by isometric force testing. Endothelium-dependent and -independent relaxation were measured after precontraction with addition of methacholine or sodium nitroprusside, respectively. Arterial contraction was stimulated with potassium chloride or phenylephrine. Analysis of variance was used to determine significance compared with immediate testing with P < .05. Under institutional review board approval, 28 PAD arteries were collected at amputation and underwent vascular function testing as described. Disturbed flow conditions were determined by indirect (upstream occlusion) flow to the harvested tibial arteries. Stable flow arteries had in-line flow. Arterial calcification was quantified manually as present or not present. Results: We found that 4°C WI and 37°C Opti-MEM best preserved endothelium-dependent relaxation and performed similarly to immediately testing aortas (termed fresh for freshly tested) (P > .95). Other storage conditions were inferior to freshly tested aortas (P < .05). Vascular smooth muscle function was tested by endothelial-independent relaxation and contractility. All storage conditions preserved endothelial-independent relaxation and contractility similar to freshly tested arteries. However, 4°C WI and 37°C Opti-MEM storage conditions most closely approximated the maximum force of contraction of freshly tested arteries in response to potassium chloride (P > .39). For human arterial testing, 28 tibial arteries were tested for relaxation and contraction with 16 arteries with peripheral artery occlusive disease (PAD with disturbed flow) and 12 without peripheral artery occlusive disease (PAD with stable flow), of which 14 were calcified and 14 were noncalcified. Endothelial-dependent relaxation data was measurable in 9 arteries and arterial contraction data was measurable in 14 arteries. When comparing flow conditions, arteries exposed to disturbed flow (n = 4) had significantly less relaxation (2% vs 59%; P = .03) compared with stable flow conditions (n = 5). In contrast, presence the (n = 6) or absence of calcification (n = 3) did not impact arterial relaxation. Arterial contraction was not different between groups in either comparison by flow (n = 9 disturbed; n = 5 stable) or calcification (n = 6 present; n = 8 absent). Conclusions: In healthy murine aortas, arterial storage for 24 hours in 4°C WI or 37°C Opti-MEM both preserved endothelium-dependent relaxation and maximum force of contraction. In human PAD arteries stored in 4° WI, flow conditions before arterial harvest, but not arterial calcification, led to differences in arterial relaxation in human PAD arteries. Arterial contractility was more robust (11/28 arteries) compared with arterial relaxation (7/28 arteries), but was not significantly different under flow or calcification parameters. This work defines ideal storage conditions for arterial ring testing and identifies that EC dysfunction from disturbed flow may persist in delayed ex vivo arterial testing.

2.
Sci Rep ; 11(1): 20557, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663876

ABSTRACT

The roles of endothelial nitric oxide synthase (eNOS) in the ventilatory responses during and after a hypercapnic gas challenge (HCC, 5% CO2, 21% O2, 74% N2) were assessed in freely-moving female and male wild-type (WT) C57BL6 mice and eNOS knock-out (eNOS-/-) mice of C57BL6 background using whole body plethysmography. HCC elicited an array of ventilatory responses that were similar in male and female WT mice, such as increases in breathing frequency (with falls in inspiratory and expiratory times), and increases in tidal volume, minute ventilation, peak inspiratory and expiratory flows, and inspiratory and expiratory drives. eNOS-/- male mice had smaller increases in minute ventilation, peak inspiratory flow and inspiratory drive, and smaller decreases in inspiratory time than WT males. Ventilatory responses in female eNOS-/- mice were similar to those in female WT mice. The ventilatory excitatory phase upon return to room-air was similar in both male and female WT mice. However, the post-HCC increases in frequency of breathing (with decreases in inspiratory times), and increases in tidal volume, minute ventilation, inspiratory drive (i.e., tidal volume/inspiratory time) and expiratory drive (i.e., tidal volume/expiratory time), and peak inspiratory and expiratory flows in male eNOS-/- mice were smaller than in male WT mice. In contrast, the post-HCC responses in female eNOS-/- mice were equal to those of the female WT mice. These findings provide the first evidence that the loss of eNOS affects the ventilatory responses during and after HCC in male C57BL6 mice, whereas female C57BL6 mice can compensate for the loss of eNOS, at least in respect to triggering ventilatory responses to HCC.


Subject(s)
Nitric Oxide Synthase Type III/metabolism , Pulmonary Ventilation/genetics , Pulmonary Ventilation/physiology , Animals , Female , Hypercapnia/physiopathology , Hypoxia , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type III/physiology , Respiration , Respiratory Insufficiency/physiopathology , Tidal Volume
3.
Sci Rep ; 11(1): 18346, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526532

ABSTRACT

Decreases in arterial blood oxygen stimulate increases in minute ventilation via activation of peripheral and central respiratory structures. This study evaluates the role of endothelial nitric oxide synthase (eNOS) in the expression of the ventilatory responses during and following a hypoxic gas challenge (HXC, 10% O2, 90% N2) in freely moving male and female wild-type (WT) C57BL6 and eNOS knock-out (eNOS-/-) mice. Exposure to HXC caused an array of responses (of similar magnitude and duration) in both male and female WT mice such as, rapid increases in frequency of breathing, tidal volume, minute ventilation and peak inspiratory and expiratory flows, that were subject to pronounced roll-off. The responses to HXC in male eNOS-/- mice were similar to male WT mice. In contrast, several of the ventilatory responses in female eNOS-/- mice (e.g., frequency of breathing, and expiratory drive) were greater compared to female WT mice. Upon return to room-air, male and female WT mice showed similar excitatory ventilatory responses (i.e., short-term potentiation phase). These responses were markedly reduced in male eNOS-/- mice, whereas female eNOS-/- mice displayed robust post-HXC responses that were similar to those in female WT mice. Our data demonstrates that eNOS plays important roles in (1) ventilatory responses to HXC in female compared to male C57BL6 mice; and (2) expression of post-HXC responses in male, but not female C57BL6 mice. These data support existing evidence that sex, and the functional roles of specific proteins (e.g., eNOS) have profound influences on ventilatory processes, including the responses to HXC.


Subject(s)
Hypoxia/metabolism , Nitric Oxide Synthase Type III/genetics , Respiration , Animals , Female , Hypoxia/physiopathology , Male , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type III/deficiency , Nitric Oxide Synthase Type III/metabolism , Pulmonary Ventilation , Sex Factors , Tidal Volume
SELECTION OF CITATIONS
SEARCH DETAIL
...